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The starting point

If A is a one-letter alphabet, the free monoid A∗ is
isomorphic to the additive monoid N.

It seems natural to extend results on N to A∗.
However, one may expect any result on A∗ to
become trivial on a one-letter alphabet.

Surprisingly enough, this is not always the case...
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An example

Given a language L ⊆ A∗ and a word u ∈ A∗, let

u−1L = {x ∈ A∗ | ux ∈ L}
Lu−1 = {x ∈ A∗ | xu ∈ L}

Theorem (Almeida, Esik, Pin 2017)

A class of regular languages closed under finite
intersection, finite union, quotients and inverse of
length-decreasing morphisms is also closed under
inverse of morphisms.
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For one-letter alphabets

For L ⊆ N and k > 0, let

L− 1 = {n ∈ N | n+ 1 ∈ L}
L÷ k = {n ∈ N | kn ∈ L}

Corollary (Cegielski, Grigorieff, Guessarian 2014)

Let L be a lattice of regular subsets of N such that
if L ∈ L, then L− 1 ∈ L. Then for each positive
integer k, L ∈ L implies L÷ k ∈ L.
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Zoltán Ésik’s original statement (January 07, 2010)

Corollary
The mapping

V 7→ {XL : L ∈ V(a∗)}

is an isomorphism from the lattice of commutative positive (ld-)varieties to the
sublattice of P(P(N)) consisting of those sets X of finite or ultimately periodic
subsets of N that contain ∅ and N which are closed under union and intersection,
moreover, the decrement operation defined by

X → X − 1 = {n− 1 | n ∈ X, n > 0}.

Any such set X is closed under the division operations defined by:

X → X/d = {n | nd ∈ X}, d > 1.

When restricted to commutative (ld-)varieties, the same mapping creates an order
isomorphism from the lattice of commutative (ld-)varieties to the sublattice of
P(P(N)) consisting of all those sets X of finite or ultimately periodic subsets of N
which are additionally closed under complementation.
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Original motivation

A function f : A∗ → B∗ is regularity-preserving if,
for each regular language L of B∗, f−1(L) is also
regular.

More generally, let C be a class of regular languages.
A function f : A∗ → B∗ is C-preserving if, for each
L ∈ C, f−1(L) is also in C.

Goal. Find a complete description of
regularity-preserving [C-preserving] functions.

Same questions for transductions, that is, relations
from A∗ to B∗.
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Part I

Recognisable sets
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Monoids

A monoid is a set M equipped with an associative
binary operation (the product) and an identity 1 for
this operation.

A monoid M is finitely generated if there exists a
finite subset F of M which generates M .

Examples. The free monoid A∗, with A finite.

Given a monoid M , the set P(M) of subsets of M
is a monoid under the product defined, for
X, Y ⊆ M , by XY = {xy | x ∈ X, y ∈ Y }.
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Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there
exists a finite monoid F , a monoid morphism
ϕ : M → F and a subset Q of F such that
P = ϕ−1(Q).

Rec(M) = set of recognizable subsets of M .

Theorem (Kleene)

If M = A∗, then recognizable = rational = regular
(that is, recognised by a finite automaton).
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Recognisable subsets of N

An arithmetic progression is a subset of N of the
form a+ rN, with r > 0.

A subset of N is recognizable iff it is a finite union
of arithmetic progressions.

{1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22, 23, 27, 28, . . .} =
{1, 3, 4, 9, 11}∪{7 + 5n | n > 0}∪{8 + 5n | n > 0}
is a finite union of arithmetic progressions.



IRIF, CNRS and University Paris Diderot

12/46

Recognisable subsets of a product of monoids

Theorem (Mezei)

Let M = M1 × · · · ×Mn be a product of monoids.
A subset of M is recognisable iff it is a finite union
of subsets of the form R1 × · · · ×Rn, where each
Ri is a recognisable subset of Mi.

Exercise: find the recognisable subsets of Nk.
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Transductions

Given two monoids M and N , a transduction from
M into N is a relation on M and N .

If τ : M → N is a transduction, then the inverse
relation τ−1 : N → M is also a transduction. If
R ⊆ N , then

τ−1(R) = {x ∈ M | τ(x) ∩R 6= ∅}
A function f : M → N is recognizability-preserving
if, for each R ∈ Rec(N), f−1(R) ∈ Rec(M).

Similarly, τ : M → N is recognizability-preserving if,
for each R ∈ Rec(N), τ−1(R) ∈ Rec(M).
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Part II

Topological characterizations
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Residually finite monoids

Let M be a monoid. A monoid F separates two
elements x, y ∈ M if there exists a morphism
ϕ : M → F such that ϕ(x) 6= ϕ(y).

A monoid is residually finite if any pair of distinct
elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are
residually finite. A product of residually finite
monoids is residually finite.
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Profinite metric

Let M be a residually finite monoid. The profinite
metric d is defined by setting, for u, v ∈ M :

r(u, v) = min
{
|F | F is a monoid separating u and v}

d(u, v) = 2−r(u,v)

with min ∅ = +∞ and 2−∞ = 0. Then

d(u, w) 6 max(d(u, v), d(v, w)) (ultrametric)

d(uw, vw) 6 d(u, v)

d(wu,wv) 6 d(u, v)
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Recognizability-preserving functions

Let M and N be two finitely generated, residually
finite monoids. (For instance M = A∗ and
N = B∗).

Theorem (Pin-Silva 2005)

A function M → N is recognizability-preserving iff
it is uniformly continuous.
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Another result

Proposition (Pin-Silva 2005)

The function τ : M × N → M defined by
τ(x, n) = xn is recognizability-preserving.

Corollary. The function u → u|u| (from A∗ to A∗)
is recognizability-preserving. Indeed it can be
decomposed as

A∗ → A∗ × N A∗ × N → A∗

u → (u, |u|) (u, n) → un
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Some examples of regularity preserving functions

u → u2 u → ũu

u → u|u| u → a|u|ab|u|b

amcbn → anbmn

u0#u1#u2 → u2#u1#u0#u1#u2
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Part III

Functions from N to N
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Ultimately periodic functions

A function f : N → N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > t,
f(n+ p) = f(n).

A function f : N → N is ultimately periodic modulo
n if the function f mod n is ultimately periodic.

A function f : N → N is cyclically ultimately
periodic if it is ultimately periodic modulo n for all
n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function f : N → N is ultimately periodic modulo
n iff for 0 6 k < n, the set f−1(k + nN) is regular.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function f : N → N is regularity-preserving iff it is
cyclically ultimately periodic and, for every k ∈ N,
the set f−1(k) is regular.
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Ultimately periodic functions

A function f : N → N is ultimately periodic modulo
k if the function f mod k is ultimately periodic.

It is cyclically ultimately periodic (cup) if it is
ultimately periodic modulo n for all n > 0.

Proposition (Siefkes 70, SeiferasMcNaughton 76)

A function f : N → N is ultimately periodic modulo
n iff for 0 6 k < n, the set f−1(k + nN) is regular.
It is regularity-preserving iff it is cyclically ultimately
periodic and f−1(k) is regular for every k ∈ N.
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Two examples

Theorem (Siefkes 1970)

The functions n → 2n and n → 22
2
...2

(exponential
stack of 2’s of height n) are cyclically ultimately
periodic and hence regularity-preserving.
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Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f, g : N → N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) g ◦ f , f + g, fg, f g, and f − g provided that
f > g and lim

n→∞
(f − g)(n) = +∞,

(2) (generalised sum) n → ∑
06i6g(n) f(i),

(3) (generalised product) n → ∏
06i6g(n) f(i).
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Two counterexamples

[Siefkes 1970] The function n → ⌊√n⌋ is not
cyclically ultimately periodic and hence not
regularity-preserving.

The function n →
(
2n
n

)
is not ultimately periodic

modulo 4 and hence not regularity-preserving.
Indeed

(
2n

n

)
mod 4 =

{
2 if n is a power of 2,

0 otherwise.
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Recursivity

Let f : N → {0, 1} be a non-recursive function.
Then the function n → (

∑
06i6n f(i))! is

regularity-preserving but non-recursive.

Open problem. Is it possible to describe all
recursive regularity-preserving functions, respectively
all recursive cyclically ultimately periodic functions?

One could try to use Siefkes’ recursion scheme
(1970).
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Siefkes’ recursion scheme

Theorem

Let g : Nk → N and h : Nk+2 → N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function f defined
from g and h by primitive recursion, i.e.

f(0, x1, . . . , xk) = g(x1, . . . , xk),

f(n+ 1, x1, . . . , xk) = h(n, x1, . . . , xk, f(n, x1, . . . , xk))

is cyclically ultimately periodic.
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The three technical conditions

(1) h is cyclically ultimately periodic in xk+2 of
decreasing period,

(2) g is essentially increasing in xk,

(3) for all x ∈ N
k+2, xk+2 < h(x1, . . . , xk+2).

A function f is essentially increasing in xj iff, for all
z ∈ N, there exists y ∈ N such that for all x ∈ N

n,
y 6 xj implies z 6 f(x1, . . . , xn).

A function f is c.u.p. of decreasing period in xj iff,
for all p, the period of the function f mod p in xj is
6 p.
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Part IV

An extension
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Lattice of subsets

Let X be a set. A lattice of subsets of X is a set L
of subsets of X containing ∅ and X and closed
under finite union and finite intersection.

A Boolean algebra of subsets of X is a lattice of
subsets of X closed under complement.

A Pervin space is a pair (X,L)
where L is a lattice of subsets of X.
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Lattice-preserving functions

Let f : X → Y be a map, K be a lattice of subsets
of X and L a lattice of subsets of Y .

Theorem

The following conditions are equivalent:

(1) for each L ∈ L, f−1(L) ∈ K,

(2) f is a uniformly continuous map from (X,K)
to (Y,L).
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Lattice-preserving functions

Let f : X → Y be a map, K be a lattice of subsets
of X and L a lattice of subsets of Y .

Theorem

The following conditions are equivalent:

(1) for each L ∈ L, f−1(L) ∈ K,

(2) f is a uniformly continuous map from (X,K)
to (Y,L).

Wait a second, what does uniformly continuous
mean in this setting?
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Uniform spaces

A uniformity on a set X is a nonempty set U of
reflexive relations (entourages) on X such that:

(1) if a relation U on X contains an element of
U , then U ∈ U , (extension property),

(2) the intersection of any two elements of U is in
U , (intersection),

(3) for each U ∈ U , there exists V ∈ U such that
V V ⊆ U (sort of transitivity).

(4) for each U ∈ U , tU ∈ U (symmetry).
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Quasi-uniform spaces

A quasi-uniformity on a set X is a nonempty set U
of reflexive relations (entourages) on X such that:

(1) if a relation U on X contains an element of
U , then U ∈ U (extension property),

(2) the intersection of any two elements of U is in
U (intersection),

(3) for each U ∈ U , there exists V ∈ U such that
V V ⊆ U (sort of transitivity).
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Pervin spaces as quasi-uniform spaces

Let (X,L) be a Pervin space. For each L ∈ L, let

UL = (X × L) ∪ (Lc ×X)

= {(x, y) ∈ X ×X | x ∈ L ⇒ y ∈ L}

L

Lc

Lc

L

The sets UL form the subbasis of a quasi-uniformity.
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Uniform continuity

Let X and Y be quasi-uniform spaces. A function
f : X → Y is uniformly continuous if, for each
entourage V of Y , (f × f)−1(V ) is an entourage of
X.

Proposition

Let (X,K) and (Y,L) be two Pervin spaces. A
function f : X → Y is uniformly continuous iff for
each L ∈ L, f−1(L) ∈ K.
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Generalized ultrametric

A generalized ultrametric on a set X is a mapping
d : X ×X → R

+ satisfying the following conditions:

(1) for all x ∈ X, d(x, x) = 0.

(2) for all x, y, z ∈ X,
d(x, z) 6 max(d(x, y), d(y, z)).

Let (X,L) be a Pervin space. Are equivalent:

(1) The associated quasi-uniformity can be
defined by a generalized ultrametric,

(2) The quasi-uniformity has a countable basis,

(3) The lattice L is countable.
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Boolean algebras

If L is a Boolean algebras, then one has a
uniformity. Moreover if L is countable, this
uniformity can be defined by an ultrametric.

If L is the set of recognizable subsets of a residually
finite monoid M , then this ultrametric is the
profinite ultrametric.
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Part V

Transductions
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Recognizability-preserving transductions

Let M and N be two finitely generated, residually
finite monoids.

Theorem

A function M → N is recognizability-preserving iff
it is uniformly continuous.

What about transductions from M to N?
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Completion

Let M be a finitely generated, residually finite

monoid. Let M̂ be the completion of the metric
space (M, d).

Proposition

M̂ is a compact monoid.

Moreover, the set K(M̂) of compact subsets of M̂
is also a compact monoid for the Hausdorff metric.
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Back to transductions

Let M and N be two finitely generated, residually
finite monoids and let τ : M → N be a
transduction.

Define a map τ̂ : M → K(N̂) by setting, for each

x ∈ M , τ̂(x) = τ(x).

Theorem (Pin-Silva 2005)

The transduction τ is recognizability-preserving iff τ̂

is uniformly continuous.
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Exercises

Let L be a subset of A∗. Let

1

2n+ 1
L = {u ∈ A∗ | there exist x, y ∈ A∗,

|x| = |y| = n and xuy ∈ L}

If L is regular, then so is the language

⋃

p odd prime

1

p
L

The transduction u → u∗ is regularity-preserving.
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Part VI

p-group languages

Target class Gp: the class of languages recognized
by a finite p-group.

Goal. Characterization of Gp-preserving functions.
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Fonctions from N to Z

The difference operator ∆ associates to each
function f : N → Z, the function ∆f : N → Z

defined by (∆f)(n) = f(n+ 1)− f(n).

A Newton polynomial is a function f such that
∆kf = 0 for almost all k.
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Mahler’s theorem

Let δkf = (∆kf)(0).

Theorem (Mahler 58)

Let f : N → Z be a function. Are equivalent:

(1) f is uniformly continuous for the p-adic metric,

(2) the functions ∆nf tend uniformly to 0,

(3) the p-adic norm of δnf tends to 0,

(4) f is the uniform limit of a sequence of Newton
polynomials.
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