Recognisable sets, profinite topologies and weak arithmetic

Jean-Éric Pin

IRIF, CNRS and University Paris 7

May 2018, Firenze

Partially funded by the ERC (grant agreement No 670624) and by the DeLTA project (ANR-16-CE40-0007)

Outline

- $\left(1\right)$ Original motivation
- (2) Recognisable sets
- $(3) \ \ {\rm Topological \ characterizations}$
- (4) Functions from \mathbb{N} to \mathbb{N}
- (5) Transductions

If A is a one-letter alphabet, the free monoid A^* is isomorphic to the additive monoid \mathbb{N} .

It seems natural to extend results on \mathbb{N} to A^* . However, one may expect any result on A^* to become trivial on a one-letter alphabet.

Surprisingly enough, this is not always the case...

An example

Given a language $L \subseteq A^*$ and a word $u \in A^*$, let

$$u^{-1}L = \{x \in A^* \mid ux \in L\}$$
$$Lu^{-1} = \{x \in A^* \mid xu \in L\}$$

Theorem (Almeida, Esik, Pin 2017)

A class of regular languages closed under finite intersection, finite union, quotients and inverse of length-decreasing morphisms is also closed under inverse of morphisms.

For one-letter alphabets

For $L \subseteq \mathbb{N}$ and k > 0, let

$$L - 1 = \{n \in \mathbb{N} \mid n + 1 \in L\}$$
$$L \div k = \{n \in \mathbb{N} \mid kn \in L\}$$

Corollary (Cegielski, Grigorieff, Guessarian 2014)

Let \mathcal{L} be a lattice of regular subsets of \mathbb{N} such that if $L \in \mathcal{L}$, then $L - 1 \in \mathcal{L}$. Then for each positive integer k, $L \in \mathcal{L}$ implies $L \div k \in \mathcal{L}$.

Zoltán Ésik's original statement (January 07, 2010)

Corollary

The mapping

 $\mathcal{V} \mapsto \{X_L : L \in \mathcal{V}(a^*)\}$

is an isomorphism from the lattice of commutative positive (ld-)varieties to the sublattice of $\mathcal{P}(\mathcal{P}(\mathbb{N}))$ consisting of those sets \mathcal{X} of finite or ultimately periodic subsets of \mathbb{N} that contain \emptyset and \mathbb{N} which are closed under union and intersection, moreover, the decrement operation defined by

 $X \to X - 1 = \{n - 1 \mid n \in X, \ n > 0\}.$

Any such set \mathcal{X} is closed under the division operations defined by:

 $X \to X/d = \{n \mid nd \in X\}, \quad d > 1.$

When restricted to commutative (ld-)varieties, the same mapping creates an order isomorphism from the lattice of commutative (ld-)varieties to the sublattice of $\mathcal{P}(\mathcal{P}(\mathbb{N}))$ consisting of all those sets \mathcal{X} of finite or ultimately periodic subsets of \mathbb{N} which are additionally closed under complementation.

Original motivation

A function $f : A^* \to B^*$ is regularity-preserving if, for each regular language L of B^* , $f^{-1}(L)$ is also regular.

More generally, let C be a class of regular languages. A function $f : A^* \to B^*$ is C-preserving if, for each $L \in C$, $f^{-1}(L)$ is also in C.

Goal. Find a complete description of regularity-preserving [*C*-preserving] functions.

Same questions for transductions, that is, relations from A^* to B^* .

Part I

Recognisable sets

Monoids

A monoid is a set M equipped with an associative binary operation (the product) and an identity 1 for this operation.

A monoid M is finitely generated if there exists a finite subset F of M which generates M.

Examples. The free monoid A^* , with A finite.

Given a monoid M, the set $\mathcal{P}(M)$ of subsets of M is a monoid under the product defined, for $X, Y \subseteq M$, by $XY = \{xy \mid x \in X, y \in Y\}$.

Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there exists a finite monoid F, a monoid morphism $\varphi: M \to F$ and a subset Q of F such that $P = \varphi^{-1}(Q)$.

 $\operatorname{Rec}(M) = \operatorname{set}$ of recognizable subsets of M.

Theorem (Kleene)

If $M = A^*$, then recognizable = rational = regular (that is, recognised by a finite automaton).

An arithmetic progression is a subset of \mathbb{N} of the form $a + r\mathbb{N}$, with $r \ge 0$.

A subset of \mathbb{N} is recognizable iff it is a finite union of arithmetic progressions.

 $\{1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22, 23, 27, 28, \ldots\} = \\ \{1, 3, 4, 9, 11\} \cup \{7 + 5n \mid n \ge 0\} \cup \{8 + 5n \mid n \ge 0\} \\ \text{is a finite union of arithmetic progressions.}$

Recognisable subsets of a product of monoids

Theorem (Mezei)

Let $M = M_1 \times \cdots \times M_n$ be a product of monoids. A subset of M is recognisable iff it is a finite union of subsets of the form $R_1 \times \cdots \times R_n$, where each R_i is a recognisable subset of M_i .

Exercise: find the recognisable subsets of \mathbb{N}^k .

Transductions

Given two monoids M and N, a transduction from M into N is a relation on M and N.

If $\tau: M \to N$ is a transduction, then the inverse relation $\tau^{-1}: N \to M$ is also a transduction. If $R \subseteq N$, then

 $\tau^{-1}(R) = \{ x \in M \mid \tau(x) \cap R \neq \emptyset \}$

A function $f: M \to N$ is recognizability-preserving if, for each $R \in \text{Rec}(N)$, $f^{-1}(R) \in \text{Rec}(M)$.

Similarly, $\tau: M \to N$ is recognizability-preserving if, for each $R \in \text{Rec}(N)$, $\tau^{-1}(R) \in \text{Rec}(M)$.

Part II

Topological characterizations

Residually finite monoids

Let M be a monoid. A monoid F separates two elements $x, y \in M$ if there exists a morphism $\varphi: M \to F$ such that $\varphi(x) \neq \varphi(y)$.

A monoid is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are residually finite. A product of residually finite monoids is residually finite.

Profinite metric

Let M be a residually finite monoid. The profinite metric d is defined by setting, for $u, v \in M$:

 $r(u, v) = \min\{|F| \mid F \text{ is a monoid separating } u \text{ and } v\}$ $d(u, v) = 2^{-r(u,v)}$

with $\min \emptyset = +\infty$ and $2^{-\infty} = 0$. Then

 $d(u,w) \leq \max(d(u,v), d(v,w)) \quad \text{(ultrametric)}$ $d(uw,vw) \leq d(u,v)$ $d(wu,wv) \leq d(u,v)$

Recognizability-preserving functions

Let M and N be two finitely generated, residually finite monoids. (For instance $M = A^*$ and $N = B^*$).

Theorem (Pin-Silva 2005)

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

The function $\tau : M \times \mathbb{N} \to M$ defined by $\tau(x, n) = x^n$ is recognizability-preserving.

Corollary. The function $u \to u^{|u|}$ (from A^* to A^*) is recognizability-preserving. Indeed it can be decomposed as

 $A^* \to A^* \times \mathbb{N} \qquad A^* \times \mathbb{N} \to A^*$ $u \to (u, |u|) \qquad (u, n) \to u^n$

Some examples of regularity preserving functions

$$egin{aligned} & u
ightarrow u^2 & u
ightarrow ilde{u} \ & u
ightarrow u^{|u|} & u
ightarrow a^{|u|_a} b^{|u|_b} \ & a^m c b^n
ightarrow a^n b^{mn} \end{aligned}$$

 $u_0 \# u_1 \# u_2 \to u_2 \# u_1 \# u_0 \# u_1 \# u_2$

I I I I I IRIF, CNRS and University Paris Diderot 19/46

Part III

Functions from ${\mathbb N}$ to ${\mathbb N}$

Ultimately periodic functions

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic if there exists $t \ge 0$ and p > 0 such that, for all $n \ge t$, f(n+p) = f(n).

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n if the function $f \mod n$ is ultimately periodic.

A function $f : \mathbb{N} \to \mathbb{N}$ is cyclically ultimately periodic if it is ultimately periodic modulo n for all n > 0.

Regularity-preserving functions from $\mathbb N$ to $\mathbb N$

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leq k < n$, the set $f^{-1}(k + n\mathbb{N})$ is regular.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is regularity-preserving iff it is cyclically ultimately periodic and, for every $k \in \mathbb{N}$, the set $f^{-1}(k)$ is regular.

Ultimately periodic functions

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo k if the function $f \mod k$ is ultimately periodic.

It is cyclically ultimately periodic (cup) if it is ultimately periodic modulo n for all n > 0.

Proposition (Siefkes 70, SeiferasMcNaughton 76)

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leq k < n$, the set $f^{-1}(k + n\mathbb{N})$ is regular. It is regularity-preserving iff it is cyclically ultimately periodic and $f^{-1}(k)$ is regular for every $k \in \mathbb{N}$.

Two examples

Theorem (Siefkes 1970)

The functions $n \to 2^n$ and $n \to 2^{2^2}$ (exponential stack of 2's of height n) are cyclically ultimately periodic and hence regularity-preserving.

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let $f, g: \mathbb{N} \to \mathbb{N}$ be cyclically ultimately periodic functions. Then so are the following functions: (1) $g \circ f$, f + g, fg, f^g , and f - g provided that $f \ge g$ and $\lim_{n \to \infty} (f - g)(n) = +\infty$, (2) (generalised sum) $n \to \sum_{0 \le i \le g(n)} f(i)$, (3) (generalised product) $n \to \prod_{0 \le i \le g(n)} f(i)$. [Siefkes 1970] The function $n \to \lfloor \sqrt{n} \rfloor$ is not cyclically ultimately periodic and hence not regularity-preserving.

The function $n \to \binom{2n}{n}$ is not ultimately periodic modulo 4 and hence not regularity-preserving. Indeed

$$\binom{2n}{n} \mod 4 = \begin{cases} 2 & \text{if } n \text{ is a power of } 2, \\ 0 & \text{otherwise.} \end{cases}$$

Recursivity

Let $f : \mathbb{N} \to \{0, 1\}$ be a non-recursive function. Then the function $n \to (\sum_{0 \leq i \leq n} f(i))!$ is regularity-preserving but non-recursive.

Open problem. Is it possible to describe all recursive regularity-preserving functions, respectively all recursive cyclically ultimately periodic functions?

One could try to use Siefkes' recursion scheme (1970).

Siefkes' recursion scheme

Theorem

Let $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^{k+2} \to \mathbb{N}$ be cyclically ultimately periodic functions satisfying three technical conditions. Then the function f defined from g and h by primitive recursion, i.e.

 $f(0, x_1, \dots, x_k) = g(x_1, \dots, x_k),$ $f(n+1, x_1, \dots, x_k) = h(n, x_1, \dots, x_k, f(n, x_1, \dots, x_k))$

is cyclically ultimately periodic.

The three technical conditions

- (1) h is cyclically ultimately periodic in x_{k+2} of decreasing period,
- (2) g is essentially increasing in x_k ,
- (3) for all $x \in \mathbb{N}^{k+2}$, $x_{k+2} < h(x_1, \dots, x_{k+2})$.
- A function f is essentially increasing in x_j iff, for all $z \in \mathbb{N}$, there exists $y \in \mathbb{N}$ such that for all $x \in \mathbb{N}^n$, $y \leq x_j$ implies $z \leq f(x_1, \ldots, x_n)$.

A function f is c.u.p. of decreasing period in x_j iff, for all p, the period of the function $f \mod p$ in x_j is $\leq p$.

Part IV

An extension

Lattice of subsets

Let X be a set. A lattice of subsets of X is a set \mathcal{L} of subsets of X containing \emptyset and X and closed under finite union and finite intersection.

A Boolean algebra of subsets of X is a lattice of subsets of X closed under complement.

A Pervin space is a pair (X, \mathcal{L}) where \mathcal{L} is a lattice of subsets of X.

Lattice-preserving functions

Let $f : X \to Y$ be a map, \mathcal{K} be a lattice of subsets of X and \mathcal{L} a lattice of subsets of Y.

Theorem

The following conditions are equivalent: (1) for each $L \in \mathcal{L}$, $f^{-1}(L) \in \mathcal{K}$, (2) f is a uniformly continuous map from (X, \mathcal{K}) to (Y, \mathcal{L}) .

Lattice-preserving functions

Let $f : X \to Y$ be a map, \mathcal{K} be a lattice of subsets of X and \mathcal{L} a lattice of subsets of Y.

Theorem

The following conditions are equivalent: (1) for each $L \in \mathcal{L}$, $f^{-1}(L) \in \mathcal{K}$, (2) f is a uniformly continuous map from (X, \mathcal{K}) to (Y, \mathcal{L}) .

Wait a second, what does uniformly continuous mean in this setting?

Uniform spaces

A uniformity on a set X is a nonempty set \mathcal{U} of reflexive relations (entourages) on X such that:

- (1) if a relation U on X contains an element of \mathcal{U} , then $U \in \mathcal{U}$, (extension property),
- (2) the intersection of any two elements of \mathcal{U} is in \mathcal{U} , (intersection),
- (3) for each $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that $VV \subseteq U$ (sort of transitivity).
- (4) for each $U \in \mathcal{U}$, ${}^tU \in \mathcal{U}$ (symmetry).

Quasi-uniform spaces

A quasi-uniformity on a set X is a nonempty set \mathcal{U} of reflexive relations (entourages) on X such that:

- (1) if a relation U on X contains an element of \mathcal{U} , then $U \in \mathcal{U}$ (extension property),
- (2) the intersection of any two elements of \mathcal{U} is in \mathcal{U} (intersection),
- (3) for each $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that $VV \subseteq U$ (sort of transitivity).

Pervin spaces as quasi-uniform spaces

Let (X, \mathcal{L}) be a Pervin space. For each $L \in \mathcal{L}$, let

 $U_L = (X \times L) \cup (L^c \times X)$ = {(x, y) \epsilon X \times X | x \epsilon L \Rightarrow y \epsilon L}

The sets U_L form the subbasis of a quasi-uniformity.

Uniform continuity

Let X and Y be quasi-uniform spaces. A function $f: X \to Y$ is uniformly continuous if, for each entourage V of Y, $(f \times f)^{-1}(V)$ is an entourage of X.

Proposition

Let (X, \mathcal{K}) and (Y, \mathcal{L}) be two Pervin spaces. A function $f : X \to Y$ is uniformly continuous iff for each $L \in \mathcal{L}$, $f^{-1}(L) \in \mathcal{K}$.

Generalized ultrametric

A generalized ultrametric on a set X is a mapping $d: X \times X \to \mathbb{R}^+$ satisfying the following conditions:

- (1) for all $x \in X$, d(x, x) = 0.
- (2) for all $x, y, z \in X$, $d(x, z) \leq \max(d(x, y), d(y, z)).$

Let (X, \mathcal{L}) be a Pervin space. Are equivalent:

- (1) The associated quasi-uniformity can be defined by a generalized ultrametric,
- (2) The quasi-uniformity has a countable basis,
- (3) The lattice \mathcal{L} is countable.

Boolean algebras

If \mathcal{L} is a Boolean algebras, then one has a uniformity. Moreover if \mathcal{L} is countable, this uniformity can be defined by an ultrametric.

If \mathcal{L} is the set of recognizable subsets of a residually finite monoid M, then this ultrametric is the profinite ultrametric.

Part V

Transductions

Recognizability-preserving transductions

Let M and N be two finitely generated, residually finite monoids.

Theorem

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

What about transductions from M to N?

Completion

Let M be a finitely generated, residually finite monoid. Let \widehat{M} be the completion of the metric space (M, d).

Proposition \widehat{M} is a compact monoid.

Moreover, the set $\mathcal{K}(\widehat{M})$ of compact subsets of \widehat{M} is also a compact monoid for the Hausdorff metric.

Let M and N be two finitely generated, residually finite monoids and let $\tau: M \to N$ be a transduction.

Define a map $\widehat{\tau} : M \to \mathcal{K}(\widehat{N})$ by setting, for each $x \in M$, $\widehat{\tau}(x) = \overline{\tau(x)}$.

Theorem (Pin-Silva 2005)

The transduction τ is recognizability-preserving iff $\hat{\tau}$ is uniformly continuous.

Exercises

1

Let \underline{L} be a subset of A^* . Let

$$\frac{1}{2n+1}L = \{ u \in A^* \mid \text{there exist } x, y \in A^*, \\ |x| = |y| = n \text{ and } xuy \in L \}$$

If L is regular, then so is the language

$$\bigcup_{p \text{ odd prime}} \frac{1}{p} L$$

The transduction $u \rightarrow u^*$ is regularity-preserving.

Part VI

Target class G_p : the class of languages recognized by a finite *p*-group.

Goal. Characterization of \mathcal{G}_p -preserving functions.

Fonctions from ${\mathbb N}$ to ${\mathbb Z}$

The difference operator Δ associates to each function $f : \mathbb{N} \to \mathbb{Z}$, the function $\Delta f : \mathbb{N} \to \mathbb{Z}$ defined by $(\Delta f)(n) = f(n+1) - f(n)$.

A Newton polynomial is a function f such that $\Delta^k f = 0$ for almost all k.

Mahler's theorem

Let $\delta^k f = (\Delta^k f)(0)$.

Theorem (Mahler 58)

Let $f : \mathbb{N} \to \mathbb{Z}$ be a function. Are equivalent:

- (1) f is uniformly continuous for the p-adic metric,
- (2) the functions $\Delta^n f$ tend uniformly to 0,
- (3) the *p*-adic norm of $\delta^n f$ tends to 0,
- (4) *f* is the uniform limit of a sequence of Newton polynomials.