Recognisable sets, profinite topologies and weak arithmetic

Jean-Éric Pin

IRIF, CNRS and University Paris 7

May 2018, Firenze

Partially funded by the ERC (grant agreement No 670624) and by the DeLTA project (ANR-16-CE40-0007)

Outline

(1) Original motivation
(2) Recognisable sets
(3) Topological characterizations
(4) Functions from \mathbb{N} to \mathbb{N}
(5) Transductions

The starting point

If A is a one-letter alphabet, the free monoid A^{*} is isomorphic to the additive monoid \mathbb{N}.

It seems natural to extend results on \mathbb{N} to A^{*}. However, one may expect any result on A^{*} to become trivial on a one-letter alphabet.

Surprisingly enough, this is not always the case...

An example

Given a language $L \subseteq A^{*}$ and a word $u \in A^{*}$, let

$$
\begin{aligned}
u^{-1} L & =\left\{x \in A^{*} \mid u x \in L\right\} \\
L u^{-1} & =\left\{x \in A^{*} \mid x u \in L\right\}
\end{aligned}
$$

Theorem (Almeida, Esik, Pin 2017)

A class of regular languages closed under finite intersection, finite union, quotients and inverse of length-decreasing morphisms is also closed under inverse of morphisms.

For one-letter alphabets

For $L \subseteq \mathbb{N}$ and $k>0$, let

$$
\begin{aligned}
& L-1=\{n \in \mathbb{N} \mid n+1 \in L\} \\
& L \div k=\{n \in \mathbb{N} \mid k n \in L\}
\end{aligned}
$$

Corollary (Cegielski, Grigorieff, Guessarian 2014)

Let \mathcal{L} be a lattice of regular subsets of \mathbb{N} such that if $L \in \mathcal{L}$, then $L-1 \in \mathcal{L}$. Then for each positive integer $k, L \in \mathcal{L}$ implies $L \div k \in \mathcal{L}$.

Zoltán Ésik's original statement (January 07, 2010)

Corollary

The mapping

$$
\mathcal{V} \mapsto\left\{X_{L}: L \in \mathcal{V}\left(a^{*}\right)\right\}
$$

is an isomorphism from the lattice of commutative positive (ld-)varieties to the sublattice of $\mathcal{P}(\mathcal{P}(\mathbb{N}))$ consisting of those sets \mathcal{X} of finite or ultimately periodic subsets of \mathbb{N} that contain \emptyset and \mathbb{N} which are closed under union and intersection, moreover, the decrement operation defined by

$$
X \rightarrow X-1=\{n-1 \mid n \in X, n>0\} .
$$

Any such set \mathcal{X} is closed under the division operations defined by:

$$
X \rightarrow X / d=\{n \mid n d \in X\}, \quad d>1
$$

When restricted to commutative (ld-)varieties, the same mapping creates an order isomorphism from the lattice of commutative (ld-)varieties to the sublattice of $\mathcal{P}(\mathcal{P}(\mathbb{N}))$ consisting of all those sets \mathcal{X} of finite or ultimately periodic subsets of \mathbb{N} which are additionally closed under complementation.

Original motivation

A function $f: A^{*} \rightarrow B^{*}$ is regularity-preserving if, for each regular language L of $B^{*}, f^{-1}(L)$ is also regular.

More generally, let \mathcal{C} be a class of regular languages.
A function $f: A^{*} \rightarrow B^{*}$ is \mathcal{C}-preserving if, for each $L \in \mathcal{C}, f^{-1}(L)$ is also in \mathcal{C}.

Goal. Find a complete description of regularity-preserving [\mathcal{C}-preserving] functions.

Same questions for transductions, that is, relations from A^{*} to B^{*}.

Part I

Recognisable sets

Monoids

A monoid is a set M equipped with an associative binary operation (the product) and an identity 1 for this operation.

A monoid M is finitely generated if there exists a finite subset F of M which generates M.

Examples. The free monoid A^{*}, with A finite.
Given a monoid M, the set $\mathcal{P}(M)$ of subsets of M is a monoid under the product defined, for
$X, Y \subseteq M$, by $X Y=\{x y \mid x \in X, y \in Y\}$.

Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there exists a finite monoid F, a monoid morphism $\varphi: M \rightarrow F$ and a subset Q of F such that $P=\varphi^{-1}(Q)$.
$\operatorname{Rec}(M)=$ set of recognizable subsets of M.

Theorem (Kleene)

If $M=A^{*}$, then recognizable $=$ rational $=$ regular (that is, recognised by a finite automaton).

Recognisable subsets of \mathbb{N}

An arithmetic progression is a subset of \mathbb{N} of the form $a+r \mathbb{N}$, with $r \geqslant 0$.

A subset of \mathbb{N} is recognizable iff it is a finite union of arithmetic progressions.
$\{1,3,4,7,8,9,11,12,13,17,18,22,23,27,28, \ldots\}=$ $\{1,3,4,9,11\} \cup\{7+5 n \mid n \geqslant 0\} \cup\{8+5 n \mid n \geqslant 0\}$ is a finite union of arithmetic progressions.

Recognisable subsets of a product of monoids

Theorem (Mezei)

Let $M=M_{1} \times \cdots \times M_{n}$ be a product of monoids. A subset of M is recognisable iff it is a finite union of subsets of the form $R_{1} \times \cdots \times R_{n}$, where each R_{i} is a recognisable subset of M_{i}.

Exercise: find the recognisable subsets of \mathbb{N}^{k}.

Transductions

Given two monoids M and N, a transduction from M into N is a relation on M and N.

If $\tau: M \rightarrow N$ is a transduction, then the inverse relation $\tau^{-1}: N \rightarrow M$ is also a transduction. If $R \subseteq N$, then

$$
\tau^{-1}(R)=\{x \in M \mid \tau(x) \cap R \neq \emptyset\}
$$

A function $f: M \rightarrow N$ is recognizability-preserving if, for each $R \in \operatorname{Rec}(N), f^{-1}(R) \in \operatorname{Rec}(M)$.

Similarly, $\tau: M \rightarrow N$ is recognizability-preserving if, for each $R \in \operatorname{Rec}(N), \tau^{-1}(R) \in \operatorname{Rec}(M)$.

Part II

Topological characterizations

Residually finite monoids

Let M be a monoid. A monoid F separates two elements $x, y \in M$ if there exists a morphism $\varphi: M \rightarrow F$ such that $\varphi(x) \neq \varphi(y)$.

A monoid is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are residually finite. A product of residually finite monoids is residually finite.

Profinite metric

Let M be a residually finite monoid. The profinite metric d is defined by setting, for $u, v \in M$:
$r(u, v)=\min \{|F| \mid F$ is a monoid separating u and $v\}$ $d(u, v)=2^{-r(u, v)}$
with $\min \emptyset=+\infty$ and $2^{-\infty}=0$. Then

$$
\begin{aligned}
d(u, w) & \leqslant \max (d(u, v), d(v, w)) \quad \text { (ultrametric) } \\
d(u w, v w) & \leqslant d(u, v) \\
d(w u, w v) & \leqslant d(u, v)
\end{aligned}
$$

Recognizability-preserving functions

Let M and N be two finitely generated, residually finite monoids. (For instance $M=A^{*}$ and $N=B^{*}$).

Theorem (Pin-Silva 2005)

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

Another result

Proposition (Pin-Silva 2005)

The function $\tau: M \times \mathbb{N} \rightarrow M$ defined by $\tau(x, n)=x^{n}$ is recognizability-preserving.

Corollary. The function $u \rightarrow u^{|u|}$ (from A^{*} to A^{*}) is recognizability-preserving. Indeed it can be decomposed as

$$
\begin{aligned}
A^{*} & \rightarrow A^{*} \times \mathbb{N} & A^{*} \times \mathbb{N} & \rightarrow A^{*} \\
u & \rightarrow(u,|u|) & (u, n) & \rightarrow u^{n}
\end{aligned}
$$

Some examples of regularity preserving functions

$$
\begin{array}{rlrl}
u & \rightarrow u^{2} & u & \rightarrow \tilde{u} u \\
u & \rightarrow u^{|u|} & u & \rightarrow a^{|u|_{a}} b^{|u|_{b}} \\
a^{m} c b^{n} \rightarrow a^{n} b^{m n} & \\
& \\
u_{0} \# u_{1} \# u_{2} \rightarrow u_{2} \# u_{1} \# u_{0} \# u_{1} \# u_{2}
\end{array}
$$

Part III

Functions from \mathbb{N} to \mathbb{N}

Ultimately periodic functions

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is ultimately periodic if there exists $t \geqslant 0$ and $p>0$ such that, for all $n \geqslant t$, $f(n+p)=f(n)$.

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is ultimately periodic modulo n if the function $f \bmod n$ is ultimately periodic.

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is cyclically ultimately periodic if it is ultimately periodic modulo n for all $n>0$.

Regularity-preserving functions from \mathbb{N} to \mathbb{N}

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leqslant k<n$, the set $f^{-1}(k+n \mathbb{N})$ is regular.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is regularity-preserving iff it is cyclically ultimately periodic and, for every $k \in \mathbb{N}$, the set $f^{-1}(k)$ is regular.

Ultimately periodic functions

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is ultimately periodic modulo k if the function $f \bmod k$ is ultimately periodic.

It is cyclically ultimately periodic (cup) if it is ultimately periodic modulo n for all $n>0$.

Proposition (Siefkes 70, SeiferasMcNaughton 76)

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leqslant k<n$, the set $f^{-1}(k+n \mathbb{N})$ is regular. It is regularity-preserving iff it is cyclically ultimately periodic and $f^{-1}(k)$ is regular for every $k \in \mathbb{N}$.

Two examples

Theorem (Siefkes 1970)

The functions $n \rightarrow 2^{n}$ and $n \rightarrow 2^{2^{2}} \quad$ (exponential stack of 2 's of height n) are cyclically ultimately periodic and hence regularity-preserving.

Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)
Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be cyclically ultimately periodic functions. Then so are the following functions:
(1) $g \circ f, f+g, f g, f^{g}$, and $f-g$ provided that $f \geqslant g$ and $\lim _{n \rightarrow \infty}(f-g)(n)=+\infty$,
(2) (generalised sum) $n \rightarrow \sum_{0 \leqslant i \leqslant g(n)} f(i)$,
(3) (generalised product) $n \rightarrow \prod_{0 \leqslant i \leqslant g(n)} f(i)$.

Two counterexamples

[Siefkes 1970] The function $n \rightarrow\lfloor\sqrt{n}\rfloor$ is not cyclically ultimately periodic and hence not regularity-preserving.

The function $n \rightarrow\binom{2 n}{n}$ is not ultimately periodic modulo 4 and hence not regularity-preserving. Indeed

$$
\binom{2 n}{n} \bmod 4= \begin{cases}2 & \text { if } n \text { is a power of } 2 \\ 0 & \text { otherwise }\end{cases}
$$

Recursivity

Let $f: \mathbb{N} \rightarrow\{0,1\}$ be a non-recursive function. Then the function $n \rightarrow\left(\sum_{0 \leqslant i \leqslant n} f(i)\right)$! is regularity-preserving but non-recursive.

Open problem. Is it possible to describe all recursive regularity-preserving functions, respectively all recursive cyclically ultimately periodic functions?

One could try to use Siefkes' recursion scheme (1970).

Siefkes' recursion scheme

Theorem

Let $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ be cyclically ultimately periodic functions satisfying three technical conditions. Then the function f defined from g and h by primitive recursion, i.e.

$$
\begin{aligned}
f\left(0, x_{1}, \ldots, x_{k}\right) & =g\left(x_{1}, \ldots, x_{k}\right), \\
f\left(n+1, x_{1}, \ldots, x_{k}\right) & =h\left(n, x_{1}, \ldots, x_{k}, f\left(n, x_{1}, \ldots, x_{k}\right)\right)
\end{aligned}
$$

is cyclically ultimately periodic.

The three technical conditions

(1) h is cyclically ultimately periodic in x_{k+2} of decreasing period,
(2) g is essentially increasing in x_{k},
(3) for all $x \in \mathbb{N}^{k+2}, x_{k+2}<h\left(x_{1}, \ldots, x_{k+2}\right)$.

A function f is essentially increasing in x_{j} iff, for all $z \in \mathbb{N}$, there exists $y \in \mathbb{N}$ such that for all $x \in \mathbb{N}^{n}$, $y \leqslant x_{j}$ implies $z \leqslant f\left(x_{1}, \ldots, x_{n}\right)$.
A function f is c.u.p. of decreasing period in x_{j} iff, for all p, the period of the function $f \bmod p$ in x_{j} is $\leqslant p$.

Part IV

An extension

Lattice of subsets

Let X be a set. A lattice of subsets of X is a set \mathcal{L} of subsets of X containing \emptyset and X and closed under finite union and finite intersection.

A Boolean algebra of subsets of X is a lattice of subsets of X closed under complement.

A Pervin space is a pair (X, \mathcal{L}) where \mathcal{L} is a lattice of subsets of X.

Lattice-preserving functions

Let $f: X \rightarrow Y$ be a map, \mathcal{K} be a lattice of subsets of X and \mathcal{L} a lattice of subsets of Y.

Theorem

The following conditions are equivalent:
(1) for each $L \in \mathcal{L}, f^{-1}(L) \in \mathcal{K}$,
(2) f is a uniformly continuous map from (X, \mathcal{K}) to (Y, \mathcal{L}).

Lattice-preserving functions

Let $f: X \rightarrow Y$ be a map, \mathcal{K} be a lattice of subsets of X and \mathcal{L} a lattice of subsets of Y.

Theorem

The following conditions are equivalent:
(1) for each $L \in \mathcal{L}, f^{-1}(L) \in \mathcal{K}$,
(2) f is a uniformly continuous map from (X, \mathcal{K}) to (Y, \mathcal{L}).

Wait a second, what does uniformly continuous mean in this setting?

Uniform spaces

A uniformity on a set X is a nonempty set \mathcal{U} of reflexive relations (entourages) on X such that:
(1) if a relation U on X contains an element of \mathcal{U}, then $U \in \mathcal{U}$, (extension property),
(2) the intersection of any two elements of \mathcal{U} is in \mathcal{U}, (intersection),
(3) for each $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that $V V \subseteq U$ (sort of transitivity).
(4) for each $U \in \mathcal{U},{ }^{t} U \in \mathcal{U}$ (symmetry).

Quasi-uniform spaces

A quasi-uniformity on a set X is a nonempty set \mathcal{U} of reflexive relations (entourages) on X such that:
(1) if a relation U on X contains an element of \mathcal{U}, then $U \in \mathcal{U}$ (extension property),
(2) the intersection of any two elements of \mathcal{U} is in \mathcal{U} (intersection),
(3) for each $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that $V V \subseteq U$ (sort of transitivity).

Pervin spaces as quasi-uniform spaces

Let (X, \mathcal{L}) be a Pervin space. For each $L \in \mathcal{L}$, let

$$
\begin{aligned}
U_{L} & =(X \times L) \cup\left(L^{c} \times X\right) \\
& =\{(x, y) \in X \times X \mid x \in L \Rightarrow y \in L\}
\end{aligned}
$$

The sets U_{L} form the subbasis of a quasi-uniformity.

Uniform continuity

Let X and Y be quasi-uniform spaces. A function $f: X \rightarrow Y$ is uniformly continuous if, for each entourage V of $Y,(f \times f)^{-1}(V)$ is an entourage of X.

Proposition

Let (X, \mathcal{K}) and (Y, \mathcal{L}) be two Pervin spaces. A function $f: X \rightarrow Y$ is uniformly continuous iff for each $L \in \mathcal{L}, f^{-1}(L) \in \mathcal{K}$.

Generalized ultrametric

A generalized ultrametric on a set X is a mapping $d: X \times X \rightarrow \mathbb{R}^{+}$satisfying the following conditions:
(1) for all $x \in X, d(x, x)=0$.
(2) for all $x, y, z \in X$, $d(x, z) \leqslant \max (d(x, y), d(y, z))$.

Let (X, \mathcal{L}) be a Pervin space. Are equivalent:
(1) The associated quasi-uniformity can be defined by a generalized ultrametric,
(2) The quasi-uniformity has a countable basis,
(3) The lattice \mathcal{L} is countable.

Boolean algebras

If \mathcal{L} is a Boolean algebras, then one has a uniformity. Moreover if \mathcal{L} is countable, this uniformity can be defined by an ultrametric.

If \mathcal{L} is the set of recognizable subsets of a residually finite monoid M, then this ultrametric is the profinite ultrametric.

Part V

Transductions

Recognizability-preserving transductions

Let M and N be two finitely generated, residually finite monoids.

Theorem

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

What about transductions from M to N ?

Completion

Let M be a finitely generated, residually finite monoid. Let \widehat{M} be the completion of the metric space (M, d).

Proposition

\widehat{M} is a compact monoid.
Moreover, the set $\mathcal{K}(\widehat{M})$ of compact subsets of \widehat{M} is also a compact monoid for the Hausdorff metric.

Back to transductions

Let M and N be two finitely generated, residually finite monoids and let $\tau: M \rightarrow N$ be a transduction.

Define a map $\widehat{\tau}: M \rightarrow \mathcal{K}(\widehat{N})$ by setting, for each $x \in M, \widehat{\tau}(x)=\overline{\tau(x)}$.

Theorem (Pin-Silva 2005)

The transduction τ is recognizability-preserving iff $\widehat{\tau}$ is uniformly continuous.

Exercises

Let L be a subset of A^{*}. Let

$$
\begin{aligned}
& \frac{1}{2 n+1} L=\left\{u \in A^{*} \mid \text { there exist } x, y \in A^{*},\right. \\
&|x|=|y|=n \text { and } x u y \in L\}
\end{aligned}
$$

If L is regular, then so is the language

$$
\bigcup_{p \text { odd prime }} \frac{1}{p} L
$$

The transduction $u \rightarrow u^{*}$ is regularity-preserving.

Part VI

p-group languages

Target class \mathcal{G}_{p} : the class of languages recognized by a finite p-group.

Goal. Characterization of \mathcal{G}_{p}-preserving functions.

Fonctions from \mathbb{N} to \mathbb{Z}

The difference operator Δ associates to each function $f: \mathbb{N} \rightarrow \mathbb{Z}$, the function $\Delta f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by $(\Delta f)(n)=f(n+1)-f(n)$.

A Newton polynomial is a function f such that $\Delta^{k} f=0$ for almost all k.

Mahler's theorem

Let $\delta^{k} f=\left(\Delta^{k} f\right)(0)$.

Theorem (Mahler 58)

Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be a function. Are equivalent:
(1) f is uniformly continuous for the p-adic metric,
(2) the functions $\Delta^{n} f$ tend uniformly to 0 ,
(3) the p-adic norm of $\delta^{n} f$ tends to 0 ,
(4) f is the uniform limit of a sequence of Newton polynomials.

